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We present results of micromagnetic simulations of thin ferromagnetic rings undergoing magnetization
reversal. This geometry is one of few examples in micromagnetics in which the transition states have been
found analytically in a one-dimensional �1D� model. According to this model, at low fields and large ring sizes,
the energetically preferred transition state is a localized magnetization fluctuation �instanton saddle�. At high
fields and small ring size, the preferred saddle state is a uniformly rotated magnetization �constant saddle�. In
the first part of this paper, we use numerical micromagnetic simulations to test these predictions of the 1D
analytical model for more realistic situations including a variety of ring radii, annular widths and magnetic
fields. The predicted activation energies for magnetization reversal are found to be in close agreement with
numerical results even for rings with a large annular width where the 1D approximation would be expected to
break down. We find that this approximation breaks down only when the ring’s annular width exceeds its
radius. In the second part, we present new metastable states found in the large radius limit and discuss how
they provide a more complete understanding of the energy landscape of magnetic nanorings.
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I. INTRODUCTION

The magnetic properties of thin ferromagnetic annuli have
attracted attention due to their potential applications in mag-
netic random access memory �MRAM�: the absence in such
geometries of edges or corners to nucleate magnetization re-
versal leads to greater stability against reversal than in other
simply connected thin film elements.

There are several ways in which ferromagnetic annuli
may be used as memory elements differing in the �meta�
stable magnetization configurations that represent a single
bit. In all of these the magnetization lies completely within
the plane and its configuration is smooth everywhere. One
such pair of configurations is of opposite chirality, i.e., clock-
wise or counterclockwise circulation of the magnetization;1–3

another is the so-called “onion states,4–9” where there is a net
magnetization along a direction in the ring’s plane. In the
former �latter� case a circumferentially �uniformly� directed
magnetic field can be used to set the magnetization configu-
ration. The minimum-energy configurations depend on the
strength and direction of the magnetic field as well as the
relative dimensions of the ring with respect to the exchange
length.

Few analytic solutions have been obtained for the rate of
thermally-induced reversal in micromagnetic problems even
in relatively simple geometries. For thin annuli under the
influence of a circumferential magnetic field, however, the
lowest energy transition �or saddle� states have been found
analytically10 in a one-dimensional �1D� approximation and
studied numerically in the full three-dimensional �3D�
problem.11

The Kramers theory of reaction rates12 can be used to
compute the typical lifetime of a given state when there are
several minimum-energy configurations. The general form
for the rate � of thermally induced transitions between two
minima in the limit of low noise is given by the well-known
Arrhenius formula13 �=�0 exp�−�E /kBT�, where the prefac-
tor �0 is usually independent of the noise strength and de-

pends only on the shape of the energy landscape close to the
extremal states relevant to the transition. The activation en-
ergy, �E, equals the energy difference between the transition
state and the metastable state, thereby determining the stabil-
ity of the latter. This is an important figure of merit for
memory devices.

In this paper, numerical micromagnetics are used to test
the predictions of the analytical theory of Martens et al.10 for
thermally induced transitions between states of opposite
chirality in a 1D approximation to the ring. The simulations
were made for a variety of mean radii, annular widths, and
magnetic fields.

The geometry under study and accompanying relevant pa-
rameters are represented in Fig. 1. The magnetic material is
in the shape of an annulus of mean radius R, annular width
�R, and �in the third dimension� thickness t. A current I
running along the axis of the ring produces a circumferential

external field H�r�= �I /2�r��̂. The ring is composed of a soft
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FIG. 1. Ring geometry showing the coordinates. The current
runs along the axis of the ring out of the page.
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isotropic ferromagnet �e.g., permalloy� with saturation mag-
netization Ms and exchange length lex. In all of the geom-
etries considered, the aspect ratio k= t /R�1, giving rise to
magnetostatic forces that constrain the magnetization to lie
in the plane of the ring �Mz=0�.10 A magnetization configu-
ration can therefore be completely described by ��� ,r�, the
angle the magnetization at a given radius makes with the unit
vector lying along the tangent to the circle with that radius:
M�� ,r�= �Mx ,My ,Mz�=Ms�sin��−�� , cos��−�� ,0�.

II. MODEL

Our starting point is the Landau-Lifshitz-Gilbert �LLG�
equation,14,15

dM

dt
= − ���M 	 Heff −

���

Ms

M 	 �M 	 Heff� , �1�

where � is the gyromagnetic ratio and 
 is the �phenomeno-
logical� damping constant. The effective magnetic field Heff
=−�ME contains all �external and internal� fields and is the
variational derivative of the total micromagnetic energy

E�M�r�� =
�0lex

2

2
�

�

d3r��M�2 +
�0

2
�

R3
d3r��U�2

− �0�
�

d3rHe · M . �2�

The three terms above correspond, respectively, to the ex-
change energy, demagnetization �or magnetostatic� energy,
and Zeeman energy, with the �small� magnetocrystalline an-
isotropy term neglected. �The last of these can be easily in-
cluded, but for the materials and geometries considered here,
it is typically overwhelmed by the much larger shape aniso-
tropy arising from the demagnetization term.� Here � is the
volume of the ring, lex=�2A / ��0Ms

2� is the exchange length
�where Ms, the magnitude of the magnetization, is assumed
to be the same everywhere, and A is the exchange constant�,
He is the applied external magnetic field, and ��M�2
���Mx�2+ ��My�2+ ��Mz�2. The “magnetostatic potential” U,
arising from long-range dipole-dipole interactions within the
magnetic material satisfies �2U=� ·M �and suitable bound-
ary conditions in the interfaces between media�, which can
be derived through Maxwell’s equations. Our simulations in-
volve numerical integration of the above set of equations.

The extremal states of a quasi-1D ferromagnetic ring �i.e.,
�R�R so that the external magnetic field does not vary
significantly with distance from the center of the ring� in
a circumferential magnetic field have been obtained
analytically.10 The solutions found apply in the thin-ring
limit: k= t /R�1 and �lex /R�2	�t /R��ln�t /R��. Under these
conditions the second term on the RHS of Eq. �2� separates
into three main terms �and a number of smaller ones�: a term
which extracts a large energy cost when the magnetization
does not lie completely within the plane of the annulus; a
local surface term �the shape anisotropy, which favors align-
ment of the magnetization with the tangential direction at the
inner and outer ring radius�; and a nonlocal bulk contribu-
tion. Analysis of these terms finds that the bulk term is small

compared to the surface term and can therefore be
neglected.10 In Sec. IV we test these conclusions for more
realistic geometries by computing numerically the total de-
magnetization energy and comparing it to the �analytically
computable� local surface �i.e., shape anisotropy� term.

In the 1D approximation the total energy reduces to

E = 2�0Ms
2
 �

2�
�2 t

R
�R 	 lex

2 �
0

� �
2�

�

��

l�
�2

+ sin2 � − 2h cos �
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where the parameters � and h are the scaled circumference
and field:
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R
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and Hc is defined below. The first term in the integrand is the
exchange energy, the second the shape anisotropy �i.e., the
surface term arising from the demagnetization energy�, and
the last is the Zeeman term.

Given an external magnetic field that is circumferential
and points everywhere in the counterclockwise direction,
there are two states that are local minima of the energy: a
stable magnetization configuration �ground state�, which is
everywhere aligned with the external field, and a metastable
state that is everywhere antiparallel to the field �i.e., circum-
ferential and pointing everywhere in the clockwise direc-
tion�. Hc corresponds in Eq. �4� to the magnetic field at
which the metastable configuration becomes unstable.

There are also two relevant unstable stationary configura-
tions �i.e., saddle states�. These are defined by the angle �
that the magnetization direction makes with the circumferen-
tial direction at each point in the annulus; i.e., � is a function
of the angle � �as shown in Fig. 1�, �h,����, or �h���. In the
limit of low noise, reversal of the magnetization occurs
through the lower energy saddle state. One of these corre-
sponds to a global rotation of the magnetization in which �
is independent of �; we therefore label it the “constant
saddle,” and is denoted �h. The constant saddle favors the
exchange and Zeeman energies at the expense of the demag-
netization energy. The second saddle state is a localized fluc-
tuation of the magnetization and we therefore refer to it as
the “instanton saddle” and denote it by �h,����. This state
favors the demagnetization energy at the expense of the ex-
change and Zeeman energies.

Which of these two saddles is energetically favored de-
pends on the applied field and the ring size. When the scaled
field h is smaller than �1− �2� /��2 the instanton saddle has a
lower energy than the constant saddle; otherwise, the con-
stant saddle is lower in energy. Figure 2 of Ref. 10 shows the
phase boundary between the two activation regimes as a
function of h and �.
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We simulated the dynamics using the analytical solutions
as our initial configurations for the two saddle states,

�h = cos−1�− h� �5�

for the constant saddle, and

�h,� = 2 cot−1�
 dn���K�m�
�

�m
� �6�

for the instanton saddle. Here dn�· �m� is the Jacobi elliptic
function with 0�m�1 and K�m� is the complete elliptic
integral of the first kind.16 The parameter m satisfies

�

2K�m�
=

m

�2 − m − �m2h2 + 4�1 − m�
, �7�

and 
 is defined by


 =� 2 − mh − �m2h2 + 4�1 − m�

2m − 2 + mh + �m2h2 + 4�1 − m�
. �8�

For sufficiently small rings ���2��, the instanton saddle
does not exist �essentially, the variation of the magnetization,
which is of order the exchange length, cannot “fit” onto the
ring�. In this limit m→0 and the instanton solution reduces
to the constant saddle. As the ring becomes larger the param-
eter m increases from 0 to 1 monotonically with �. For �
�2� the m becomes numerically indistinguishable from 1.
In this limit the instanton saddle configuration is given by

�h,� = 2 tan−1�� h

1 − h
cosh� ��

2�
�1 − h
� . �9�

We classify rings according to their � values as small ��
�2��, medium ���2��, and large ���2��. Physically, �
characterizes the ratio of the magnetostatic to exchange en-
ergies. A medium ring ���2�� has a scaled circumference
close in size to a domain wall in the material. The saddle
configurations of each regime are shown in Fig. 2.

The activation energies within the 1D analytical model
can be calculated using Eq. �3� �cf. Ref. 10�. For the constant
saddle they can be analytically computed: �E
=�0Ms

2t2R�ln�t /R���1−h�2.

III. METHOD

A. Micromagnetic simulations

We studied thin nanorings by running simulations on the
model of Sec. II using the publicly available packages
OOMFF and NMAG.17,18 These packages effectively simulate
the dynamics specified by Eqs. �1� and �2� at zero tempera-
ture, i.e., all runs start from an initial configuration and run
downhill in energy. We take 
=1 in the simulations to
achieve convergence in a small number of time steps.

Our initial states were the instanton and constant saddles
described by Eqs. �5� and �6�, which provided starting points
that were guessed to be relatively close to the actual saddles.
The system subsequently relaxed to the actual saddle states,
which turned out to be remarkably close to analytical solu-
tions. We describe below how this was determined.

Depending on the starting state, the system will evolve to
one or the other �meta�stable state, i.e., either the clockwise
or the counterclockwise magnetization configuration. In or-
der to find the actual two-dimensional �2D� saddle numeri-
cally �recall that the magnetization is forced by the magne-
tostatic energy term to lie in the plane of the ring�, we
introduce a new field value, denoted ht, an “effective field”
for which the state �h,l behaves as a saddle state. In deter-
mining ht, two criteria are used. First, �h,l must be as nearly
a stationary state as the numerics allow, i.e., the initial time
derivative of the total micromagnetic energy should be close
to zero �limhe→ht

� �E
�t �t=0→0−�. Second, the state �h,l should

mark the boundary between the basins of attraction of each
�meta� stable state �i.e., for h�ht the system evolves to a
clockclockwise state, while for h�ht it evolves to the coun-
terclockwise state�. In the following sections, we show that
these criteria are satisfied in a variety of rings with different
exchange lengths and annular widths. We also show how the
model eventually breaks down when the width of the ring
becomes very large.

The procedure can be summarized is as follows. For a
given initial �h,l we find the appropriate ht by a bracket and
bisection iterative process. We set the initial configuration
�h,l, fix the external magnetic field at the value he, and allow
the system to relax. If the final state is the metastable �clock-
wise� configuration we increase he by an amount �he; if the
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FIG. 2. �Color online� Saddle configurations computed analyti-
cally from the 1D model of Martens et al. for small, medium, and
large ring sizes. �a� For small rings the magnetization reversal goes
through the constant saddle state; �b� when ��2� the transition is
via the instanton saddle; �c� as the relative size of the ring increases
the fluctuation in the instanton saddle occupies a smaller fraction of
the ring.
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final state is the stable �counterclockwise� configuration we
decrease he by �he. We then start a new run and reduce �he
by a factor of 2. As �he decreases, the total relaxation time
increases due to the slow dynamics at the start of the simu-
lation providing evidence that the initial configurations are
approaching the true saddle states. We iterate until we reach
a numerical uncertainty of �h=6	10−3. The NMAG simula-
tions were run using a mesh consisting of 20963 volume
elements, 15154 surface elements, and 7594 points with an
edge length of average 3.89 nm and standard deviation of
0.7. �The quality distribution of the mesh was 1.66% below
0.6; 9.11% between 0.6 and 0.7, 57.28% between 0.7 and
0.8, 32.05% between 0.8 and 0.9, and 0.01% above 0.9.� The
simulations in OOMMF were run in the three different regimes
in the following way: values of � for a given geometry were
set by changing the exchange constant A �cf. below Eq. �2��
and keeping the ring dimensions constant. This changes lex
and therefore �. This permits side by side comparisons of
rings with the same size and aspect ratio in the different
regimes. The cell size in the OOMMF simulations were se-
lected to be about lex for all regimes. For the cases where lex
is large this change reduces the simulation time considerably.

B. String method in rare events

The String method19 is a recently introduced numerical
procedure for calculating transition energies and paths within
the context of large fluctuations and rare events. It is useful
to find the path connecting two stable configurations MA and
MB through a curve � with minimum energy. The obtained
path corresponds to the reversal trajectory in the limit where
the precession term of Eq. �1� is negligible compared to the
damping term. This curve � satisfies

�ME���� = �ME��� − ��ME��� · t̂�t̂ = 0 �10�

where t̂ is the unit tangent of the curve �. The curve � is
found by guessing a parametrized path ��0�= �M�
�
� �0,1� ,M�0�=MA ,M�1�=MB� and evolving it in “time”
according to

�tM�
� = − �ME��M�
�� + �t̂ . �11�

The second term is added to enforce a particular parametri-
zation; it does not alter the actual evolution of the curve. It is
convenient to rewrite this equation as

�tM�
� = Heff
� �M�
�� + �t̂ . �12�

For numerical purposes the path � is discretized with N+1
points betwen MA and MB. After each iteration of Eq. �12�
with an Euler forward algorithm the magnetization vectors
are renormalized to Ms. In Sec. VI we use this method to find
the barrier between two states connected through a transition
state.

IV. MEDIUM SIZE NARROW RING

We consider a narrow ring of medium reduced circumfer-
ence � �i.e., the parameter m not close to 1� with lex /R�1,
t /R�1, and �lex /R�2	�t /R��ln�t /R�� �A=3.2	10−10 J /m,

�R=40 nm, R=200 nm, t=2 nm, and Ms=8	105 A /m�.
With these values, � and Hc are 12 and 73.9 mT, respectively.
We first test numerically whether the surface, or shape aniso-
tropy, term is in fact the main contributor to the magneto-
static energy as required for the validity of the analytic solu-
tions to hold.10 Using OOMMF and NMAG the total
demagnetization energy were obtained for different values of
h and compared to the values of the surface term �second
term in the integrand of Eq. �3��. The results of this compari-
son are presented in Fig. 3, which shows that the numerical
computation of the total demagnetization energy gives a de-
pendence on h close to the contribution from the shape an-
isotropy alone: the agreement is within 5% for the instanton
saddle and 10% for the constant saddle. This provides nu-
merical support for the approximations used to arrive at the
1D analytical solutions of Ref. 10 and confirms that the bulk
magnetostatic term, neglected in the analytic model, is in-
deed not important.

We also compare the total demagnetization energies com-
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FIG. 3. Total demagnetization energies, using different calcula-
tion methods, compared to analytical results for the shape anistropy
term alone �A=3.2	10−10 J /m, R=200 nm, t=2 nm, and �R
=40 nm�. �a� Comparison of OOMMF using the ConstMag method
at cell size 1 nm and NMAG with theoretical predictions vs h. �b�
Demagnetization energy vs cell size using three different methods
for computing this energy in OOMMF, all for h=0.2. The solid line is
the analytical computation of the shape anisotropy term alone.
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puted using OOMMF for different cell sizes in Fig. 3�b�. Three
suitable methods to calculate the demag energy are available
in the OOMMF package: ConstMag, 3dSlab, 3dCharge. Con-
stmag calculates the average demagnetization field assuming
the magnetization is constant in each cell; 3dSlab uses a
demag field obtained from blocks of constant charge; and
3dCharge uses constant magnetization to calculate the in-
plane component of the magnetic field and constant charges
to calculate the out-of-plane demagnetizing field. As seen in
the figure, the consistency between different methods of cal-
culation improves as cell size is reduced and the numerical
results approach that of the 1D model.

Once ht is obtained following the method described in
Sec. III, the saddle state is numerically obtained and the ac-
tivation energy is thereby determined from the difference
between each saddle state and the metastable state. Figure 4
displays curves at ht=0.21 for each of the two saddle states
used as initial configurations.

As can be seen in the figure, after a very short transient
the system arrives at a configuration in which the energy
stays almost constant for an extended period; this indicates
that the initial 1D analytical solution is close in both energy
and its geometrical configuration to the true 2D saddle.
Eventually, the saddle state decays into one of the two stable
configurations. The activation energy is easily computed this
way �as seen in Fig. 4� and a glance at the figure confirms
that for the applied field ht=0.21 the instanton configuration
has a lower activation energy than the constant saddle as
predicted theoretically.10

The method described in Sec. III was repeated to obtain
the behavior of �E as a function of ht. Using this approach

one can calculate ht�
he

++he
−

2 and �E=
E��h,he

+�+E��h,he
−�

2 −E��
=� ,ht� for each of the two saddle configurations. Here,
E��h ,he� represents the numerical energy of a configuration
�h under an applied field of magnitude he. The results are
summarized in Fig. 5 together with the analytical predic-
tions.

Figures 5�a� and 5�b� show �E�ht� for the instanton
saddle and constant saddle, respectively. From bottom to top

the curves represent calculations in OOMMF for two different
cell sizes, an NMAG calculation and the analytical prediction.

The NMAG results are closer to the analytical predictions
than the OOMMF calculations. This is due to the fact that the
curvature is more faithfully represented by a mesh of tetra-
hedrons in NMAG whereas OOMMF represents the ring with a
square grid. The edges of the tetrahedrons can be arranged to
follow closely the curvature of the ring whereas the square
cells edges will in most cases make a finite angle with the
ring tangent. This results in a much larger error contribution
to the demagnetization energy in square grids in OOMMF than
in NMAG. This is expected because the cells in the OOMMF

calculations are larger in volume than the tetrahedrons used
in NMAG.

Figure 5�c� presents the NMAG simulation results for the
activation energy. As predicted in Ref. 10, the instanton
saddle configuration has a lower activation energy at lower
fields. For a fixed � the activation energy curves are pre-
dicted to merge at hc���=�1− �2� /��2 because the instanton
saddle reduces to the constant saddle when m→0. For higher
fields, the constant configuration is the saddle state. Numeri-
cally, the field at which the saddles merge is somewhat lower
than that predicted. This discrepancy arises because the the-
oretical model applies to a strictly 1D ring whereas the simu-
lations run using higher-dimensional rings �2D in OOMMF

and 3D in NMAG�.

V. LARGE SIZE NARROW RING

We now investigate an annular film with the same dimen-
sions but different lex �e.g., permalloy with A=1.3
	10−11 J /m�; the rest of the dimensions are kept the same
as above. Such a ring belongs to the large ring regime ��
=60, m�1�. As before, we can obtain a qualitative under-
standing of the reversal process by following the time evo-
lution of the micromagnetic energy; this is presented in Figs.
6 and 7. Using the fact that an instanton is a superposition of
two domain walls with opposite chirality �Fig. 10�b��,20 the
features observed in Figs. 6 and 7 can be explained and an
intuitive idea of the reversal mechanism developed.

We begin by discussing the evolution of energy with time
as shown in Fig. 6�a�. For he�ht the instanton decays into
the metastable state with a rapid decrease in energy �seen to
the left of t=0�. This corresponds to the annihilation of two
transverse domains walls. The field in this case is not suffi-
cient to separate the two transverse walls. When he�ht �right
side� the energy of the system decays linearly with time to-
ward the stable state and then sharply decreases. The linear
time decay corresponds to movement of the transverse do-
main walls in opposite directions �due to the external field� at
approximately constant speed as can be seen in Fig. 6. The
final sharp decrease in energy results from the collision and
annihilation of the walls. Note that the magnetostatic and
exchange energies remain almost constant while the walls
are propagating �roughly� independently of each other. The
annihilation energies of the domain walls �indicated by the
arrows in Fig. 6�a�� are roughly the same magnitude.

The slope of the E�t� curve during the propagation phase
provides a measure of how fast the reversal proceeds. For the
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Arrows show activation energy of each saddle. The configurations
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slow evolution. The two criteria used to determine a saddle state are
clearly seen.
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particular damping parameter used, the last term of Eq. �3�
relates the slope of the energy curve to the speed of the wall
by v= 1

4n�0M0
2 � 2�

� �2 R2

lex
2 h�Rt

�� dE
dt ��, where n is the number of

domain-wall pairs present in the ring. Direct observation of
the micromagnetic configurations gives an average wall
speed of v=108.5 m /s while the calculation from the energy
graph equals v=108.1 m /s. In deriving this expression �
=0,� for each domain and domain-wall widths are assumed
to remain constant during propagation. A comparison to
medium-sized rings shows that at fixed h the reversal time
increases as lex decreases for two reasons: the domain-wall
width is comparatively smaller and the effective scaled cir-
cumference � is comparatively larger �cf. Figs. 4 and 6�.

The time dependence of the energy for the constant saddle
case, Fig. 7, is seen to proceed in several steps where the
energy decrease is gradual, punctuated by large changes in
the slope dE /dt. These features can be explained as follows.
Figure 8 shows that the activation energy of the constant
saddle at h�0.17 is several times larger than the activation
energy of the instanton saddle at the same field. With such a
large activation energy, it is relatively easy to create several
domain-wall pairs along different �randomly placed� parts of
the ring, each of them with an energy cost roughly equal to

the activation energy of the instanton. In the simulations, this
process is modified by the discretization of the ring, and in
an experimental setup it is possible that impurities and edge
roughness might play a similar role. The abrupt changes in
slope are due, as before, to the annihilation of domain-wall
pairs and hint at a richer variety of states that are stationary
in the energy when the scaled circumference is large com-
pared to the exchange length.

A. Multiple-wall pair energies

We have also gone beyond the work of Martens et al. by
finding numerically new stable states consisting of multiple
domain-wall pairs. When present, these states influence the
time evolution of the system in a manner similar to that just
described. In this section we discuss these new states and
present a model to incorporate their effects on magnetization
reversal.

Figure 10�d� shows one of these locally stable double pair
states. They can be described as a combination of topological
defects in particular edge defects and domain walls, which
we will now describe cf. Fig. 9�. Bulk topological defects are
vortex and antivortex singularities of the magnetization con-
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figurations with a net contribution to the exchange energy.21

They are characterized by their winding number which is
conserved over any continous transformation of the magne-
tization. Close to an edge of the material the singularities
become half vortices with winding number �1 /2.22 Since
�→� for the limit m→1, we can consider any small seg-
ment of the ring as a strip: the outer edge of the ring maps
into the lower part of the strip.

A transverse domain wall can be described as a composite
of two edge defects of opposite sign22 at opposite sides of a
ferromagnetic strip �see Fig. 10�a��. In the ring, it is conve-
nient to label such a domain wall using the sign of the topo-
logical defect on the inner side of the ring. The topological
defects experience a “Coulomb-type” attraction or repulsion.
Walls where the magnetization points in opposite directions
�equal signs for same side edge defects as in Fig. 10�c��
experience repulsive interactions. The origin of repulsion
arises from the magnetostatic and exchange energies in the
region between walls. Walls which are parallel to each other
�with opposite signs in the same side edge defects, as in Fig.
10�b�� experience attractive interactions.

Any small thermal fluctuation of the magnetization ini-
tially parallel to the ring �strip� edges would be a precursor to
a double wall of this last type �Fig. 10�b�� as illustrated by
the profile of such configurations. The radial component of
the magnetization in the ring �transversal component in the
strip� edges could have any sign: the fluctuation will have the
same energy whether the magnetization tilts toward the in-
side or the outside of the ring �up or down in a strip�. A
reversal can be produced by a fluctuation with equal prob-
ability for any of these two orientations.

The domain between two walls will expand under the
influence of an external magnetic field parallel to the do-
main’s magnetization �producing a repulsive pressure on the
walls� and contract under an antiparallel magnetic field �pro-
ducing an attractive pressure on the walls�. The balance be-
tween the interdefect interaction and the field determines
whether a configuration is in stable or unstable equilibrium.
For example, an instanton saddle configuration is equivalent
to two domain walls with opposite signs on their innermost
defects which enclose a domain parallel to the field �cf. signs
in Fig. 10�b��. The field pushes the domain walls away from

FIG. 6. �Color online� Evolu-
tion of the total energy with time
for the instanton saddle, with en-
ergies measured with respect to
that of the stable state. The decay
to the metastable state is shown as
proceeding to the left of t=0, and
to the stable state to the right of
t=0. The ring dimensions are �R
=40 nm, �=60. When he�ht the
instanton saddle �II close to t=0�
decays quickly into the metastable
configuration �I at t=0.7 ns�; do-
main walls are annihilated. When
he�ht the two domain walls of
the instanton saddle �III. close to
t=0� separate �IV, t=1.5 ns�,
move to the opposite side of the
ring �V, t=5.4 ns� and annihilate
�VI, t=5.7 ns�.
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each other while their mutual interaction tends to bring them
together. These opposing tendencies produce the unstable
equilibrium which makes this configuration a saddle state.

The opposite situation, in which edge defects repel and
the enclosed domain is antiparallel to the field, produces a
metastable state. The enclosed magnetic domain does not
vanish because the half-vortices experience an effective re-
pulsion: it is energically costly to unwind the topological

FIG. 7. �Color online� Evolution of the total energy with time for the constant saddle, with energies measured with respect to that of the
stable state. The decay to the metastable state is shown as proceeding to the left of t=0 and to the stable state to the right of t=0.The ring
dimensions are �R=40 nm, �=60. When he�ht the constant saddle �II at t=0.15 ns� starts to decay into the metastable configuration �I at
t=0.28 ns�, it is possible to see that this decay is not uniform in all the ring, and some regions decay faster than others. When he�ht the
constant saddle quickly develops domains �III at t=0.51 ns�. Counterclockwise domains expand at the expense of clockwise domains �IV,
t=0.83 ns�, with annihilitation that produce a sudden decrease in energy �V, t=1.03 ns� leaving a single domain-wall pair which continues
moving �VI, t=2.52 ns� until eventual annihilation; the slope during the last stage is very close in magnitude to the slope of Fig. 6 during
domain-wall propagation, the discrepancy is due to the difference of applied fields.
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defects. As a result this configuration is stable, with an en-
ergy intermediate between the clockwise and counterclock-
wise configurations.

We can now explain how the metastable state evolves into
the state represented in Fig. 10�d�. If the ring is sufficiently
large, two instantons �one domain-wall pair each� are pro-
duced �Fig. 11�. If both instantons point in the same radial
direction the system evolves into the counterclockwise state
�Fig. 11�a��. However, if the instanton fluctuations point in
opposite radial directions �Fig. 11�b�� the system evolves to
the state shown with four domain walls.

The domain-wall pairs need not be at opposite sides of the
ring for this configuration to be stable as confirmed by dis-
placing one of the wall pairs by several angles and waiting
for the system to relax.

It is interesting to summarize the new possible configura-
tions and their total energies in the large ring case. The low-
est state is the stable configuration and there exists a series of
metastable states separated from each other by the energy of
a double wall trapped domain �Fig. 12�.With the exception of
the single wall pair, all configurations shown have a total

winding number difference from the counterclockwise state
of zero for a path that completely encloses the central hole of
the ring. The single wall pair configuration has this winding
number difference equal to one. While reversing the field
will make the double wall system decay into the stable state;
the single wall pair configuration cannot decay into the coun-
terclockwise configuration. A trapped domain configuration
using a single pair of domain walls has already been pro-
posed for an MRAM device.23 These 360° walls were also
found to form and to be stable in simulations conducted us-
ing NMAG. These structures have been also observed in
experiments.24

VI. WIDE RINGS

Having verified numerically the conclusions and predic-
tions of the analytical model of Martens et al.10 for narrow
rings we now proceed to test the limits of its applicability
with increasing annular width. Given the 1D nature of the
analytical model, we expect that at some width the model
should break down and its conclusions no longer apply. Sur-
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FIG. 10. �Color online� �a� Transverse domain-wall composed of two edge defects of opposite sign. �b� Magnetic configuration equivalent
to the instanton state in a stripe. �c� A trapped domain between two antiparallel walls. �d� Low energy metastable state configuration. The
topological defect sign at the inner boundary determines if the domain-wall pairs are stable with respect to the external magnetic field. With
respect to the ground state �counterclockwise�, this state has a winding number of zero as do the instanton saddle, constant saddle, and
clockwise configurations.
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prisingly, this breakdown finally occurs at a larger width than
initially expected.

Increasing the ring width introduces two new effects that
cause the analytical model to break down. First, it allows the

external field to vary in magnitude appreciably as one moves
along a radial direction. Second, it increases the relative
magnitude of the �previously neglected� nonlocal bulk term
of the magnetostatic energy with respect to that of the local
surface term.

In our simulations, �R is set to the values 100 nm �Hc
=29.5 mT�, 200 nm �Hc=14.7 mT�, and 380 nm �Hc
=7.8 mT�. The central hole of the annulus is a few exchange
lengths in diameter in the latter case. For this reason vortex-
like “singularities” remain in the gap.

Figure 13 summarizes the activation energies for the
widths considered. It should be noticed that as �R increases
for fixed lex, � decreases, and the annulus shifts away from
the large ring �m�1� approximation. We consequently dis-
cuss only middle size rings where ��12. Figures
13�a�–13�c� shows that the main predictions of the model
hold even for very wide rings: the configurations �h are
saddles for certain ht and for fields below hc the instanton
saddle configuration is preferred to the constant saddle con-
figuration.

We have found that the annular width must be increased
to the extreme wide-ring limit �R�2R in order for the
model to fail. Its breakdown can be observed in the E�t�
curve of Fig. 14�a�. In this regime, there are still fields ht for
which the dynamics bifurcates to either the stable or meta-
stable state on either side of ht but at such fields it is clear
from Fig. 14�a� that �limh→ht

� �E
�t �t=0→” 0−�. This indicates that

the initial configurations chosen from the 1D analytical so-
lutions are no longer close to the true saddles. Instead of a
long initial period of little change we find instead relaxation
to a state in which the central region of the ring is magne-
tized circumferentially and the outer edge of the ring retains
some memory of the starting configuration. This appears to
be a new type of saddle configuration, which we call the
relaxed state and is shown in Fig. 14.

For simulations starting from the instanton saddle with
parameters h=0.1, . . . ,0.4 the system evolves to the relaxed
state. At higher values of h �h=0.5, . . . ,0.8 for the instanton
and h=0.7, . . . ,1.0 for constant saddle configurations� the
relaxed state does not satisfy the stationarity condition but
the bifurcation condition can still be satisfied with a particu-
lar ht. The absence of a plateau in the E vs t curves makes the
definition of the activation energy somewhat more problem-
atic but it can still be defined by using as the energy of the
saddle state the point at which the curves E��h ,he

−� and
E��h ,he

+� separate. In this way approximate activation ener-
gies can be determined, and the results are shown in Fig.
14�b�.

For values of h that correspond to the constant saddle
�0.2,…,0.6� another feature of the breakdown of the 1D
model can be seen. The system relaxes to neither of the
stable states considered so far �see Fig. 15�. It evolves to a
radially dependent state with counterclockwise orientation at
the inner edge of the ring and clockwise orientation at the
outer edge. This configuration is stabilized by the large in-
homogeneity in the magnitude of the magnetic field as one
moves outward along a radial direction. It is important to
note that the energy of this state is lower than the energies of
either initial configuration used �the 1D analytical saddle so-
lutions� but is higher than either the clockwise or counter-
clockwise state.

FIG. 11. �Color online� Two possible evolutions of a fluctuation
with two instantons in different parts of the ring. �a� The magneti-
zation relaxes to the metastable state only if the radial magnetiza-
tion components are parallel. �b� Otherwise, two trapped domains
�360° walls� appear.
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and the constant saddle are shown. The metastable configuration
becomes unstable beyond he=1.
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There exists a low barrier that prevents this configuration
from relaxing into either of the counterclockwise configura-
tions in the limiting fields of Fig. 14. We obtain an estimate
of this energy by using the String method without
reparametrization19 as described in Sec. III. We start with
sequences of 50 equally spaced configurations that connect
each of the circumferencial configurations to this newly
found metastable state along an straight line. The result of
the relaxations are shown in Fig. 16. Figure 16�a� shows the
total energy of the string points after relaxation; the inset
shows a very shallow energy barrier that prevents decay to
the two lowest stable configurations. It is interesting to ob-
serve that this barrier almost disappears on the left at he
=0.22500 and on the right at he=0.25625 explaining why
this state is stable only for a very narrow band of field val-
ues.

The physical origin of the two barriers is clear if the three
components are studied separately �Figs. 16�b�–16�d��. For
all graphs the origin corresponds to the state represented in
Fig. 15, and the clockwise oriented magnetization is 50 steps
to the left of zero, the counterclockwise configuration is lo-
cated 50 steps to the right of zero.

The Zeeman energy �Fig. 16�d�� prevents the system from
moving toward the clockwise configuration for all states
along the string. It is maximum for the clockwise configura-
tion and decreases monotonically along the path. Any point
of the trajectory is pushed to the right of the graph by the
external field.

Figure 16�b� shows the demagnetization energy with a
sharp barrier that prevents the magnetization from pointing
perpendicular to the ring edges. At this barrier, the magneti-
zation at the surface points radially outward �as in Fig. 14 he

+

for the constant saddle�. This produces a sharp barrier at this
step of the path. At this point, the magnetostatic energy is the
only energy term acting against the reversal of the magneti-
zation from clockwise to counterclockwise orientations;
other terms favors the reversal. The net effect of the demag-
netization energy barrier is to favor configurations away
from this barrier. Figure 16�c� represents the exchange en-

ergy. The exchange energy is minimal in the two circumfer-
encial states.

When these three interactions are considered together the
stability of this state is understood: at lower fields the ex-
change and magnetostatic energy are balanced by the Zee-
man energy. At large fields Zeeman and exchange favor a
magnetization out of the ring’s surface, when the shape an-
isotropy barrier is overcome, the system reverses suddenly
into the counterclockwise configuration.

The analytical model presumed the field to be constant in
the radial direction as in the narrow ring case. Although the
field inhomogeneity eventually renders this assumption in-
valid, the 1D model is surprisingly robust and breaks down
only in the extreme case just considered.

VII. CONCLUSION

The 1D analytical model of Martens et al.10 has been
tested and confirmed using numerical simulations for a vari-
ety of ring sizes and external magnetic fields that more
closely approximate realistic laboratory situations. Although
it was initially expected that the analytical model would ap-
ply only to narrow annuli, our simulations show that it is
surprisingly robust, eventually breaking down only in the
extreme two-dimensional limit.

By studying a large portion of the relevant parameter
space, �lex ,�R�, we have also found new saddle and stable
states. These findings enrich our understanding of the energy
landscape of ferromagnetic rings.

Two limits present particularly interesting features: the
large-R narrow ring ��R�R� and the extremely wide ring.
The large narrow ring allows for the appearance of multiple
instantons at energies below the constant saddle configura-
tion; their relative orientations and positions determine the
final magnetization configuration. We provide a topological
analysis of these new configurations and predict a hierarchy
of such states differing by the number of domain-wall pairs
in each. The interaction between these domain walls can be
characterized and understood through “edge defects” that
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compose them. Moreover, by following the evolution of the
downhill energy run from one of these states to the stable
configuration, one can infer the propagation of domain-wall
pairs in the ring: sudden changes in energy indicate annihi-
lation of domain-wall pairs, while linear decrease of energy
occurs during domain-wall propagation.

The 1D model predicts well the activation energy for
magnetization reversal even for wide rings. Eventually,
though, in the extremely wide regime limit, the 2D nature of
the magnetic field becomes important and the 1D approxi-
mation breaks down. In this regime, a new stable state arises
in which the magnetization is radially dependent but inde-
pendent of the angle. The String method19 has been used to
verify the existence of a barrier between this state and other
stable states with lower energy and is used to clarify the
physical origin of this barrier in terms of the various contri-

butions to the energy from exchange, magnetostatic, and ex-
ternal field sources.
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